Các đặc điểm Dòng chảy rối

Dòng chảy rối được đặc trưng bởi các đặc điểm sau:

Tính bất thường: các dòng chảy rối luôn rất bất thường. Vì lý do này, các vấn đề của dòng chảy rối thường được xử lý theo thống kê chứ khó xác định được một cách chính xác. Dòng chảy rối mang tính hỗn loạn. Tuy nhiên, không phải tất cả các dòng chảy hỗn loạn đều là dòng chảy rối.

Tính khuếch tán: Việc sẵn sàng cung cấp năng lượng sẵn có trong các dòng chảy rối có xu hướng đẩy nhanh tiến độ đồng nhất hóa (pha trộn) của hỗn hợp chất lưu. Sự " khuếch tán " tức là đặc trưng làm tăng sự pha trộn và làm tăng tốc độ vận chuyển khối lượng, động lượng và năng lượng trong một dòng chảy.

Khuếch tán trong dòng chảy rối thường được mô tả bởi hệ số khuếch tán rối. Hệ số khuếch tán rối được định nghĩa theo hiện tượng, do tính tương đồng với sự khuyết tán phân tử, nhưng nó không có ý nghĩa vật lý thực sự, phụ thuộc vào các điều kiện dòng chảy, và không phải là một thuộc tính của bản thân chất lưu. Ngoài ra, khái niệm khuếch tán rối giả định một mối quan hệ giữa một thông lượng rối (turbulent flux) và gradient của một biến trung bình tương tự như mối quan hệ giữa thông lượng và gradient tồn tại trong việc vận chuyển phân tử. Trong những điều kiện tốt nhất, giả định này cũng chỉ là gần đúng. Tuy nhiên, sự khuếch tán rối là phương pháp tiếp cận đơn giản nhất để phân tích định lượng cho các dòng chảy rối, và nhiều mô hình đã mặc nhiên công nhận nó trong tính toán. Ví dụ, trong một vật thể lớn chứa nước như là đại dương, hệ số này có thể được tìm ra bằng cách sử dụng định luật hàm mũ bốn phần ba của Richardson và nguyên tắc di chuyển ngẫu nhiên (random walk). Trong các sông ngòi và các dòng hải lưu lớn, hệ số khuếch tán được đưa ra dưới dạng các biến thể của công thức Elder.

Tính quay tròn: dòng chảy rối có độ xoáy (vorticity) khác không và được đặc trưng bởi một cơ chế tạo xoáy ba chiều được gọi là sự căng xoáy. Trong động lực học chất lưu, về bản chất chúng là các xoáy rối chịu sức căng kết hợp với sự tăng tương ứng của thành phần độ xoáy trong phương căng - do bảo toàn động lượng góc. Mặt khác, sự căng xoáy là cơ chế cốt lõi mà nhờ nó thác năng lượng của dòng rối dựa vào để thiết lập chức năng cấu trúc. [cần giải thích rõ hơn] Nói chung, cơ chế căng ngụ ý cho việc làm mỏng các xoáy rối trong phương vuông góc với phương căng do bảo tồn thể tích của các phần tử chất lưu. Kết quả là, kích cỡ chiều dài xuyên tâm của các xoáy rối giảm và các cấu trúc dòng chảy lớn hơn bị phá vỡ thành những cấu trúc nhỏ hơn. Quá trình này tiếp tục cho đến khi cấu trúc kích cỡ nhỏ là đủ nhỏ để động năng của chúng có thể được biến đổi thành nhiệt bởi độ nhớt phân tử của chất lưu. Đây là lý do tại sao dòng chảy rối luôn quay và ba chiều. Ví dụ, lốc xoáy khí quyển quay nhưng hình dạng hai chiều của chúng không cho phép tạo ra xoáy rối và vì vậy chúng ko phải là các dòng rối. Ngoài ra, các dòng chảy đại dương là phân tán nhưng về bản chất chúng không quay và do đó không phải là dòng rối.

Tính tiêu tán: Để duy trì dòng chảy rối, một nguồn cung cấp năng lượng bền vững là cần thiết vì sự rối loạn tiêu tán một cách nhanh chóng khi động năng được chuyển thành năng lượng nội tại dưới tác dụng của ứng suất cắt nhớt. Sự rối loạn gây ra sự hình thành của các xoáy rối (eddies) với nhiều kích cỡ chiều dài khác nhau. Hầu hết động năng của chuyển động rối được chứa trong các cấu trúc quy mô lớn. Năng lượng "truyền như thác" từ những cấu trúc quy mô lớn này cho các cấu trúc quy mô nhỏ hơn bằng một cơ chế quán tính và về cơ bản là không nhớt. Quá trình này tiếp tục, tạo ra các cấu trúc nhỏ hơn và nhỏ hơn nữa và do đó tạo ra một hệ thống phân cấp của các xoáy rối. Cuối cùng quá trình này tạo ra những cấu trúc đủ nhỏ để sự khuếch tán phân tử trở nên quan trọng và sự tiêu tán năng lượng nhớt cuối cùng sẽ diễn ra. Kích cỡ mà tại đó điều này xảy ra là kích cỡ chiều dài Kolmogorov.

Do thác năng lượng này, mà dòng chảy rối có thể được coi như là sự chồng chất của một phổ các dao động vận tốc dòng chảy và các xoáy rối xung quanh một dòng chảy trung bình (mean flow). Các xoáy rối được định nghĩa một cách lỏng lẻo như là các mô hình dính kết của vận tốc dòng chảy, xoáy rối và áp suất. Dòng chảy rối có thể coi như được tạo thành từ một hệ thống phân cấp của các xoáy rối trên một dải rộng của các kích cỡ chiều dài và hệ thống phân cấp này có thể được mô tả bằng phổ năng lượng, đo lường năng lượng trong các dao động vận tốc dòng chảy cho mỗi kích cỡ chiều dài (số sóng). Các kích cỡ trong dòng thác năng lượng nói chung là không thể kiểm soát và rất không đối xứng. Tuy nhiên, dựa trên kích cỡ chiều dài các xoáy rối có thể được chia thành ba loại:

  1. [[Kích cỡ chiều dài tích phân]]: kích cỡ lớn nhất trong phổ năng lượng. Những xoáy rối này lấy năng lượng từ dòng chảy trung bình và cũng lấy từ nhau. Như vậy, chúng là những xoáy rối sản xuất năng lượng và chứa hầu hết năng lượng. Chúng có dao động vận tốc dòng chảy lớn và tần số thấp. Các kích cỡ tích phân có tính không đẳng hướng rất cao và được định nghĩa dưới dạng tương quan vận tốc dòng chảy giữa hai điểm được tiêu chuẩn hóa. Chiều dài tối đa của các kích cỡ này bị hạn chế bởi chiều dài đặc trưng của thiết bị chứa chất lưu. Ví dụ, kích cỡ chiều dài tích phân lớn nhất của dòng chảy trong đường ống bằng với đường kính ống. Trong trường hợp của nhiễu loạn không khí, chiều dài này có thể đạt tới vài trăm km.
  2. [[Kích cỡ chiều dài Kolmogorov]]: là kích cỡ nhỏ nhất trong dải phổ, và nó tạo ra lớp nhớt phụ. Trong lớp này, năng lượng đầu vào từ các tương tác phi tuyến và năng lượng thoát ra từ việc tiêu tán nhớt là chính xác cân bằng với nhau. Các kích cỡ nhỏ có tần số cao, gây ra sự rối loạn đẳng hướng và đồng nhất cục bộ.
  3. Kích cỡ vi mô Taylor: là kích cỡ trung gian giữa kích cỡ lớn nhất và nhỏ nhất và chúng tạo ra lớp quán tính phụ. Kích cỡ vi mô Taylor không phải là kích cỡ làm tiêu tán năng lượng mà chúng là trung gian cho việc truyền năng lượng từ kích cỡ lớn nhất xuống kích cỡ nhỏ nhất mà không làm tiêu tán năng lượng. Một số tài liêu không coi kích cỡ vi mô Taylor như là một kích cỡ chiều dài đặc trưng và coi thác năng lượng chỉ chứa các kích cỡ nhỏ nhất và lớn nhất; trong khi các tài liệu sau này thường đề cập đến cả lớp quán tính phụ và lớp nhớt phụ. Tuy nhiên, kích cỡ vi mô Taylor thường làm cho việc mô tả thuật ngữ "rối’’ được thuận tiện hơn vì những kích cỡ vi mô Taylor này đóng vai trò chi phối trong việc truyền năng lượng và động lượng trong không gian số sóng.

Mặc dù có thể tìm được một số lời giải chính xác của các phương trình Navier – Stokes chi phối chuyển động chất lưu, tất cả các lời giải như vậy là không ổn định do các nhiễu loạn hữu hạn nếu số Reynolds lớn. Sự phụ thuộc nhạy cảm vào các điều kiện ban đầu và các điều kiện biên làm cho dòng chảy chất lưu trở nên bất thường cả về thời gian và không gian vì vậy mô tả thống kê là cần thiết. Nhà toán học người Nga Andrey Kolmogorov đã đề xuất lý thuyết thống kê đầu tiên cho dòng chảy rối, dựa trên khái niệm thác năng lượng nói trên (ý tưởng ban đầu được giới thiệu bởi Richardson) và khái niệm về sự tự tương đồng. Kết quả là, kích cỡ vi mô Kolmogorov đã được đặt theo tên ông. Nhưng hiện nay lý thuyết tự tương đồng đã bị phá vỡ và vì vậy mô tả thống kê đã được sửa đổi như hiện nay.[4] Tuy nhiên, mô tả đầy đủ cho dòng chảy rối vẫn là một trong những vấn đề chưa được giải quyết trong vật lý.

Theo một câu chuyện ngụy tác, Werner Heisenberg được hỏi rằng điều gì ông sẽ cầu xin Chúa, nếu có cơ hội. Ông đã trả lời rằng: "Khi tôi gặp Thiên Chúa, tôi sẽ hỏi ông ấy hai câu hỏi: Tại sao lại có tính tương đối? và tại sao lại có dòng chảy rối? Tôi thực sự tin rằng ông ấy sẽ có câu trả lời cho câu hỏi đầu tiên (nhưng chưa chắc có câu trả lời cho câu hỏi thứ hai)."[5] Một câu chuyện dí dỏm tương tự cũng được quy cho Horace Lamb (người đã xuất bản một cuốn sách nổi tiếng về Thủy động lực học) - lựa chọn của Horace Lamb là Điện động lực học lượng tử (thay vì tính tương đối) và dòng chảy rối. Lamb được trích dẫn khi nói trong một bài phát biểu trước Hiệp hội vì sự tiến bộ của khoa học Vương quốc Anh, "Bây giờ tôi là một người đàn ông già, và khi tôi chết và lên thiên đàng có hai vấn đề trên mà tôi hy vọng tìm được sự thấu hiểu/ giác ngộ. Một là điện động lực học lượng tử, và hai là sự chuyển động rối của chất lưu. và về câu hỏi thứ nhất thì tôi khá lạc quan."[6][7]

Một sự thuyết trình chi tiết hơn về sự rối loạn của dòng chảy với việc nhấn mạnh vào dòng chảy có số Reynolds cao, dành cho các nhà vật lý và toán học ứng dụng nói chung, được tìm thấy trong các bài viết trên Scholarpedia của R. Benzi, U. Frisch[8] và G. Falkovich.[9]

Có nhiều kích cỡ của những chuyển động khí tượng; trong bối cảnh này sự rối loạn ảnh hưởng đến các chuyển động kích cỡ nhỏ.[10]

Liên quan

Tài liệu tham khảo

WikiPedia: Dòng chảy rối http://espace.library.uq.edu.au/view/UQ:205133 http://www.sciencedirect.com/science/article/pii/0... http://www.turbulenceforecast.com http://adsabs.harvard.edu/abs/1991RSPSA.434....9K http://adsabs.harvard.edu/abs/1991RSPSA.434...15K http://adsabs.harvard.edu/abs/2006Sci...313.1768K http://adsabs.harvard.edu/abs/2007RSPTA.365..841N http://adsabs.harvard.edu/abs/2011Sci...333..192A http://adsabs.harvard.edu/abs/2015JFM...766...76J http://turbulence.pha.jhu.edu